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ABSTRACT 
 

Gastric cancer (GC) is one of the most common malignant tumors with high incidence and mortality rates. Most 

patients with GC are not diagnosed until the advanced stage of cancer or during tumor screening, resulting in 

missing the best treatment time. This study identified key modules and hub genes associated with GC by weighted 

gene co-expression network analysis (WGCNA). The "limma" package in R was used to identify differentially 

expressed genes (DEGs) in GC samples from TCGA, and a total of 4892 DEGs were identified. GO enrichment 

and KEGG pathway enrichment analyses were conducted to detect the related pathways and functions of DEGs. 

These DEGs were primarily associated with extracellular matrix organization, DNA replication, cell cycle, and 

p53 signaling pathway. Gene modules associated with clinical characteristics were identified with WGCNA in 

tumor and normal samples. Six gene modules were obtained in the WGCNA network, of which two modules were 

significantly correlated with GC. Hub genes of key modules were identified using survival analysis and expression 

analysis. Finally, one-way ANOVA was used to explore the relationship between hub gene expression in normal 

tissues and different pathological stages of GC. Through survival and expression analysis, a total of 19 genes 

with good prognosis and significantly differential expressed were identified. The hub genes were significantly 

differential expressed in normal tissues and different pathological stages of GC, indicating that these genes have 

important diagnostic value for early GC and can be used as auxiliary indicators in the diagnosis of early GC.  

 
Key words: Gastric cancer, Bioinformatics, Differentially expressed genes, Weighted gene co-expression 

network analysis, Early diagnosis 

INTRODUCTION 

Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of gastric mucosa or the glands of 

the most superficial layer [1]. According to the global cancer statistics of GLOBOCAN 2020, GC has become the 

fifth leading cause of cancer-related morbidity and the fourth leading cause of cancer-related deaths worldwide 

[2]. GC is a multifactorial disease, which can be affected by many factors, such as environmental, dietary factors, 

Helicobacter pylori (H. pylori) infection incidence, obesity, and genetic factors during formation and development 

[3, 4]. Patients with GC have the characteristics of a high incidence rate, metastatic rate and mortality, low early 

diagnosis rate, radical resection rate, and 5-year survival rate [5]. The incidence of GC in young people is gradually 

increasing, and the mortality of GC patients is also increasing and gradually tends to be young people [6, 7]. 

Because patients with early GC are usually asymptomatic and have a low diagnosis rate, approximately 70% of 
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patients are first diagnosed with advanced GC [6]. Some patients with advanced GC even lose the chance to have 

the tumor surgically removed, so early detection, early diagnosis, and early treatment become very important. 

Therefore, mining new biomarkers of early GC is significant for the early diagnosis and treatment of GC, which 

will help in improving the overall prognosis of GC patients.  

Weighted gene co-expression network analysis (WGCNA) is an analysis method for analyzing gene expression 

patterns of multiple samples. It can cluster genes with similar expression profiles to form gene modules, which 

can be combined with clinical information to identify hub genes in the modules [8-10]. WGCNA has been widely 

used to identify gene modules and hub genes related to clinical information in various cancers. Previous studies 

have identified some hub genes associated with the progression and prognosis of breast cancer, Colorectal cancer, 

and human clear cell renal cell carcinoma through WGCNA, providing a theoretical basis for the diagnosis and 

treatment of related cancers [11-13].  

In this study, we combined WGCNA with other methods to analyze the clinical information and RNA sequencing 

data of GC patient samples downloaded from the TCGA database to identify hub genes associated with clinical 

traits (disease status (Tumor_Normal), gender, pathologic_T, pathologic_stage, vital_status, and initial_weight). 

These hub genes may be new biomarkers or therapeutic targets for early GC, providing a theoretical basis for the 

diagnosis and treatment of early GC.  

MATERIALS AND METHODS 

Data sources and pre-processing 

We downloaded RNA sequencing data and clinical information data from TCGA (https://tcga.xenahubs.net) 

hosted at the Xena website of the University of California at Santa Cruz (http://xena.ucsc.edu/) [14]. The RNA 

sequencing data included 380 GC samples and 37 normal samples. The Principal Component Analysis (PCA) was 

used to detect the characteristics of the data set [15]. We excluded abnormal samples based on the results of the 

principal component analysis to ensure the reliability of the results (Figure 1).  

 

 
Figure 1. Workflow of searching hub genes in GC. 

 

DEGs screening 

The "limma" R package (version 3.44.3) [16] was used to perform differential expression analysis on the gene 

expression data of GC tumor samples and normal samples in TCGA. The cut-off criteria of DEGs screening were 

http://xena.ucsc.edu/
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P < 0.05. 

 

KEGG pathway and GO enrichment analysis of DEGs 

Enrichment analysis is a statistical analysis method that can speculate the functions of DEGs. Gene Ontology 

(GO) is a common bioinformatics tool that can be used to explore the potential functions of genes [17]. The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) can be used to determine the main biochemical metabolic pathways 

and signal transduction pathways involved in genes [18]. We conducted GO enrichment analysis and KEGG 

pathway analysis on DEGs, respectively, in order to find the functions of DEGs. The "Clusterprofiler" package 

(version 3.16.1) [19] in R was used for GO enrichment analysis and KEGG pathway analyses of DEGs. GO terms 

with P < 0.01 and KEGG terms with P < 0.05 were used in the following analysis.  

 

Identification of clinically significant modules 

We used the "WGCNA" R package (version 1.70-3) to construct a co-expression network of the DEGs [8, 10]. 

Firstly, the samples were clustered by the flashClust tool in R to detect outlier samples. The Pearson correlation 

coefficient (PCC) between any two genes was calculated. Thirdly, selecting an appropriate soft threshold (β) made 

the constructed network more consistent with the characteristics of the scale-free network by using the 

pickSoftThreshold function (1). Fourth, the weighted adjacency matrix (AM) was created with the power function 

(1) where amn refers to the adjacency between gene m and gene n, cmn refers to the PCC between 

amn = |cmn|β (1) 

 

those two genes and 𝛽 refers to the soft threshold power. Then, the AM was transformed into the topological 

overlap matrix (TOM) using the adjacency function (2) where lmn represents the sum of the product of the 

adjacency coefficients that the nodes connected by genes m and gene n, km or kn represent the sum of the 

adjacency coefficients that gene m or gene n with all other genes in the weighted network. Based on TOM's  

 

 

dissimilarity measure (1-TOM), average linkage hierarchical clustering was performed to assign genes with 

similar expression profiles to the same gene module. The number of genes for the smallest gene module was set 

to 30, and the threshold for merging similar modules was set to 0.25. The Module Eigengene (ME) is the module's 

first principal component, representing the entire module's gene expression profile. The Pearson's correlation 

coefficient was calculated between the ME and the clinical phenotype to screen the modules with a higher 

correlation with the phenotype.  

 

Hub gene selection  

The Gene Significance (GS) represents the correlation between genes and clinical phenotypes, and the Module 

Membership (MM) represents the correlation between genes in the module and the other module. Genes were 

screened by setting the thresholds of GS and MM. In order to verify the biological significance of candidate genes, 

survival analysis and differential expression analysis in GEPIA (http://gepia.cancer-pku.cn) [20] were conducted 

to verify the further influence of these genes on the survival of GC patients and whether there were differences in 

their expression between early tumor tissues and normal tissues. The thresholds for survival analysis and 

differential expression analysis were set as p<0.05 and p<0.01, respectively. 

 

Analysis of the diagnosis value of hub genes 

For 241 samples provided by TCGA, clinical phenotypes and pathological stages of GC were selected to analyze 

the relationship between hub gene expression in normal tissues and different GC pathological stages, which was 

completed by one-way ANOVA in GraphPad Prism 8 software [21]. 

RESULTS AND DISCUSSION 

Data pre-processing and screening of DEGs 

After excluding 50 GC tumors and 26 normal samples that can not be classified clearly, the rest of the samples 

TOMmn = 
lmn + amn

min(km + kn) + 1 - amn
 (2) 

http://gepia.cancer-pku.cn/
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were divided into GC tumor samples from normal samples according to PCA analysis, and PC1 and PC2 

accounted for 8.8% and 5% of the observed differences respectively (Figures 2a and 2b). A total of 4892 DEGs 

were selected between normal and GC samples, including 3043 up-regulated genes and 1849 down-regulated 

genes (Figures 2c and 2d). 
 

 

 
a) b) 

  
c) d) 

  

e) f) 

Figure 2. Identification and functional enrichment analysis of DEGs in GC. (a) Numbers of samples. (b) 

Principal component analysis. (c) The volcano plot. Red dots: up-regulated genes; gray dots: not significant 

genes; purple dots: down-regulated genes. (d) Numbers of DEGs. (e) GO enrichment analysis. (f) KEGG 

pathway analysis. The dots' color reflects the significance of enrichment, and the size of the dots indicates 

the number of genes enriched under the given term (top 20 enrichment results shown according to p-value). 
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GO enrichment and KEGG pathway analysis of DEGs 

GO enrichment and KEGG pathway analysis were used to explore the potential biological functions of DEGs in 

GC. According to the GO enrichment analysis, extracellular matrix organization, DNA replication, cell cycle DNA 

replication, and nuclear DNA replication were the enriched terms that were always reported in previous studies 

(Figure 2e) [22, 23]. As for KEGG pathways, focal adhesion, proteoglycans in cancer, pathogenic Escherichia 

coli infection, cell cycle, apoptosis, small cell lung cancer, p53 signaling pathway, and ECM−receptor interaction 

most often enriched in DEGs (Figure 2f) [23, 24]. 

 

WGCNA and identification of key modules 

The co-expression network was constructed through WGCNA, tumor samples, and normal samples was clustered 

into two branches, and there were no outliers to be deleted (Figure 3a). The scale-free topology was set to 0.9, 

then the soft threshold 𝛽 was 4 (Figure 3b). Six gene modules (blue, green, yellow, brown, turquoise, and grey) 

were obtained finally, among which the grey module represented the gene set that could not be aggregated with 

other modules (Figures 3c and 3d). The correlation between these modules and the clinical phenotype showed 

that the turquoise module (cor=0.93, P=8e-107) was significantly positively correlated with GC, and the blue 

module (cor=-0.62, P=6e-27) was significantly negatively correlated with GC. These results indicate that the 

turquoise module may play an essential role in the tumorigenesis of GC, and the blue module may have anti-

tumor effects. Therefore, the turquoise and blue modules are selected for further research and analysis. 

 

Identification and validation of hub genes 

In the blue and turquoise modules, MM and GS showed a significant positive correlation (Figures 3e and 3f). 

The criteria for selecting hub genes were |MM| > 0.8 and |GS| > 0.6 in the blue module, and the thresholds for 

determining hub genes were |MM| > 0.8 and |GS| > 0.8 in the turquoise module. 89 and 216 genes were identified 

to satisfy these selection thresholds in the blue and turquoise modules. Following verification using the survival 

analysis and the expression level between GC tissues and normal tissues, 19 genes were selected as hub genes 

(ASF1B, DPT, ZBTB16, WISP2, PRIMA1, EPCAM, PDZD4, ATP1A2, FAM83H, ABCA9, C8orf46, MAMDC2, 

TCEAL2, CEP55, LIMS2, LMOD1, PLP1, TMEM100, ADHFE1). These hub genes were associated with the 

prognosis of GC, and there were significant differences in the expression of all hub genes between GC tissues and 

normal tissues (Figures 4 and 5). 

 

  

a) b) 

 
 

c) d) 
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e) f) 

Figure 3. WGCNA of DEGs in GC. (a) Clustering of GC samples and normal samples in clinical features. 

(b) The scale-free fit index and the mean connectivity for various soft threshold powers (β) are analyzed. (c) 

The cluster dendrogram of DEGs is based on the dissimilarity measure (1-TOM). (d) Heatmap of the 

correlation between the module eigengenes (ME) and different clinical traits of GC. (e, f) The scatter plots 

of the module membership (MM) and gene significance (GS) for genes in the turquoise(g) and blue(f) 

modules. 

 

 
Figure 4. Survival analysis for hub genes in GC. These 19 genes are significantly related to survival, in 

which the red line indicates the high expression group of the gene, and the blue line indicates the low 

expression group of the gene. P < 0.05 was used as a significant criterion. 
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Figure 5. The expression level of hub genes in GC tissues and normal tissues. Hub genes were analyzed 

using the GEPIA online database to further verify their expression levels between GC tissues and normal 

tissues. * P < 0.01 was considered statistically significant. 

Early diagnostic biomarkers for GC 

In verifying the correlation of these hub genes at the pathologic stage of GC, we found that the expression levels 

of 19 hub genes in normal GC tissues were significantly different from those in early GC tissues, among which 

ASF1B, EPCAM, FAM83H and CEP55 were higher expressed in early GC than normal gastric, while other genes 

showed lower expression levels in early cancer, indicating that these hub genes may have important clinical value 

in the early diagnosis of GC (Figure 6) [25]. The expression level of ASF1B and CEP55, which was reported to 

be related to the development of multiple cancers and mitotic exit and cytokinesis, was close to 0 in normal gastric 

while was high in tumor tissues, including the early stage. Contrarily, the expression level of PDZD4, ATP1A2, 
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ABCA9, C8orf46, and TCEAL2 was a high-level expression in normal tissues while close to 0 in the early stage 

of GC (Table 1, Figure 6). The combination of the 19 hub genes, especially for ASF1B, CEP55, PDZD4, ATP1A2, 

ABCA9, C8orf46, and TCEAL2, can be effective biomarkers utilized in early GC detection.  

 

Table 1. Functional roles of the 19 hub genes 

Gene Function Source PMIDs# 

ASF1B Related to the development of multiple cancers 35362843; 21179005 

DPT 
A non-collagenous extracellular matrix component that can 

regulate tumor cell proliferation and invasiveness 
30391671; 25149533; 21796630 

ZBTB16 
Acts as a transcriptional repressor to inhibit the proliferation and 

metastasis of tumor cells 

10688654; 24359566; 29358655; 

24339862; 32517789; 30431129 

WISP2 Bidirectional regulation effect on tumor cells 34385183; 30808397; 32711570 

PRIMA1 
Interacts with AChE and anchors AChE onto the neural cell 

membranes 
11804574 

EPCAM 
Influences on cell cycle and proliferation directly and up-regulate 

proto-oncogene c-myc and cyclin A/E 
15195135 

PDZD4 
A new human gene with the PDZ domain plays a role in tumor cell 

proliferation 
15077175 

ATP1A2 

The catalytic component of the active enzyme, which catalyzes the 

hydrolysis of ATP coupled with the exchange of sodium and 

potassium ions across the plasma membrane 

33880529 

FAM83H Regulates epithelial cell migration 23902688 

ABCA9 
Transporter that may play a role in monocyte differentiation 

and lipid transport and homeostasis 
12150964 

C8orf46 Involved in neurogenesis 32558188 

MAMDC2 Inhibiting tumor activity 32707597 

TCEAL2 Tumor suppressor 33061644 

CEP55 Plays a role in mitotic exit and cytokinesis 16198290; 17853893 

LIMS2 Modulating tumor cell spreading and migration 16959213 

LMOD1 Promote tumor cell migration 35488236 

PLP1 Formation and maintenance of myelin multilayer structure 30094605 

TMEM100 Inhibition of tumor cell metastasis 34687431; 31188741 

ADHFE1 
Associated with tumor cell proliferation and embryonic 

development 

16959974; 23517143; 

29202474; 24886599 

#PMID: PubMed Unique Identifier 
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Figure 6. Association between hub genes expression and tumor stage. **** was considered as P < 0.0001. 

As one of the most common malignant tumors threatening human health, GC has significant limitations in the 

treatment of advanced GC, and many problems have not been solved [26]. Therefore, it is critical to screen for 

new biomarkers or the hub genes for therapeutic targets of early GC. In this study, 4892 DEGs were screened. 

The results of GO and KEGG analyses showed that these DEGs were significantly associated with extracellular 

matrix organization, DNA replication, cell cycle, and p53 signaling pathway. The cell cycle is often dysregulated 

during the formation of many tumors, and targeted regulation of cancer cell cycle therapy is a potential treatment 

for cancer [27, 28]. Thus, studying the cell cycle pathway may improve the understanding of GC carcinogenesis 
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mechanisms and treatment options. DNA replication is closely related to the cell cycle. DNA replication, including 

incomplete, erroneous, or untimely replication, may cause mutations, chromosomal poly- or aneuploidy along 

with gene copy number variation, and these variations may lead to cancer [29]. Extracellular matrix (ECM) is 

involved in the regulation of cancer development and plays an important role in tumor metastasis [30]. The p53 

signaling pathway is a typical cancer signaling pathway; the presence of p53 is required for DNA-damaged cells 

to arrest, repair, and re-enter the cell cycle [31]. Therefore, we may think that these DEGs may play a role in the 

progression of GC and may affect prognosis by regulating the p53 signaling pathway, resulting in a poor prognosis 

of GC. 

WGCNA identified gene co-expression modules associated with GC progression. A total of 6 modules were 

identified, among which the genes in blue and turquoise modules were significantly related to GC 

(Tumor_Normal). Then, the genes in blue and turquoise modules were screened and verified, and 19 hub genes 

were screened by survival analysis and differential expression analysis. These results indicate that the verified 

hub genes may have a promising future in the diagnosis and treatment of GC. 

At present, the early detection of cancer has important clinical significance and value, which challenges the 

frontier of early detection of cancer. Therefore, we investigated the differential expression of these 19 hub genes 

between different pathological stages of GC and normal tissues. Analysis showed that the expression levels of 

ASF1B, EPCAM, FAM83H, and CEP55 in early GC were significantly higher than those in normal tissues, and 

the expression levels of the other 14 hub genes were lower in early GC, suggesting that the hub genes may have 

important clinical significance in the early diagnosis of GC. 

Many of the 19 hub genes we identified have previously been reported to be associated with cancer. A study 

reports that high expression of ASF1B is associated with an increase in disease progression and metastasis rate of 

breast cancer [32]. Researchers have demonstrated that DPT is related to cell adhesion and invasiveness and plays 

an important role in regulating the invasion and metastasis of oral squamous cell carcinoma [33]. As for ZBTB16, 

MAMDC2, TCEAL2, and TMEM100, four studies have reported that they can inhibit the activity, proliferation, or 

metastasis of tumor cells, including gallbladder cancer, breast cancer, renal cell carcinoma and non‑small cell lung 

cancer [34-37]. PDZD4 and ADHFE1 have been proven to be associated with synovial sarcoma and colorectal 

cancer cell proliferation, respectively [38, 39]. Two studies have reported that LIMS2 and LMOD1 can promote 

the migration of GC cells [40, 41]. As for WISP2, researchers have demonstrated that it has a bidirectional 

regulatory effect on tumor cells, with WISP2 overexpression inhibiting the growth of esophageal cancer cells and 

its absence inhibiting the proliferation of tumor cells in ovarian cancer [42, 43]. In particular, LIMS2, LMOD1, 

TCEAL2, TMEM100, and ZBTB16 have been reported to play important roles in the development of GC [40, 41, 

44-46]. These results suggest that the hub gene we screened may have an important potential role in GC and may 

act as a biomarker for the early screening of GC. 

Early detection, diagnosis, and treatment of cancer can not only significantly improve the survival rate but also 

have a higher quality of life. This study advances our understanding of the early diagnosis of GC. These hub genes 

may be used as biomarkers and potential therapeutic targets for early GC, and their discovery has important 

clinical significance for the early diagnosis, treatment, and survival prognosis of GC patients. However, our study 

still has some shortcomings and lacks further molecular biology experiments to confirm the function of these hub 

genes in GC.  

CONCLUSION 

Based on WGCNA, we obtained six co-expression network modules and then screened the genes in the key 

modules. Combined with the GEPIA database, a total of 19 hub genes were verified. The 19 identified hub genes 

can be used as biomarkers of early GC, which is conducive to the detection and treatment of early GC and the 

reduction of the mortality of GC patients and provides a theoretical basis for the prediction, diagnosis, and 

treatment of early GC. 
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