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ABSTRACT

The rapid increase in demand and development aifsitnédl chemicals, to sustain and improve qualifylite
worldwide have resulted in the contamination andhhprevalence of chemicals into environment, posing
potential threat to the biota. Hence all organismse exposed constantly and unavoidably to theseidor
chemicals, or xenobiotics, which include both maotufred and natural chemicals such as drugs, inthlst
chemicals, pesticides, pollutants, pyrolysis pradualkaloids, secondary plant metabolites, andn®yroduced by
molds, plants, and animals. The toxicity or thetaarination of chemicals can be reduced by viabbedrmediation
solution with many intermediate or degradation prots. In this remedial process, cytochromes P450R%) are
key enzymes in the metabolization of all xenoksdticcatalyzing oxidations of the substrate andpaigmorphic in
nature. Cytochrome P450 genes constitute one ofatigest gene superfamilies, with representativesli living
organisms, including bacteria, fungi, insects, ptarand animals. The catalytic versatility and dtdde diversity of
CYP enzymes have led to considerable interest ilizing them as biocatalysts for many biotechnotadi
applications (such as synthesis of drugs chemicattabolization of endogenous compounds, suchtsédcids
and vitamins to maintain homeostasis, targeted gheeapy, cancer treatment) other thanbioremediatim this
review we primarily discuss 1) background inforroatiabout CYPs including its occurrence, classifaratand
mechanism 2) the role of CYP enzymes in bioremedidor detoxification of industrial and environmah
pollutants special reference to “Morpholine” and ngineered CYPs enzymes and their potential mle i
transgenic plant-mediated phytoremediation.
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INTRODUCTION

Among the various enzymatic group, cytochrome 450R) and glutathione S-transferase(GSTs) play majerin

the environmental detoxification and biotransforimratof drugs pesticides and xenobiotic. In additionCYP450
oxidation, glutathione conjugation is an importargchanism for xenobiotic remediation. Glutathiona®sferase
(GSTs-EC.2.5.1.18) is a family of multifunctionalzymes involved in the cellular detoxification agxtretion of
many physiological and endogenous substances tfidathlyzes the addition of glutathione to endogenar
xenobiotic, often toxic electrophilic compounds ambdich are found in animals, plants and microorganrs [2].
Their role in xenobiotic metabolism is beyond theope of present review. However CYP mechanism and
occurrence are briefly explained in respectiveisass
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The first report on the existence of a CYP enzymeaamicrosomal carbon monoxide binding pigment was
published in 1958 by klingenberg M. [3]. This ena/tmas a unique 450 nm optical absorption peak drehvits
hemoprotein nature was recognized and was givennéme cytochrome 450 [4], [5], [6]. Cytochrome P450
enzymes comprise a superfamily of heme proteingvhich the heme iron atom is coordinated to a prakim
cysteine thiolate. This thiolate ligand is respblesifor the characteristic absorption maximum o f&%CO
complex at 450 nm and is critical for P450 catay3i]. It is crucial for the oxidative, peroxidagivand reductive
metabolism of a diverse group of compounds, botloganous such as steroids, bile acids, fatty agitEnins,
prostaglandins, precarcinogen and leukotrieneseandenous including xenobiotics, most of the theusip drugs
and environmental pollutants play an important rate homeostasis[8-11]. The large number of sulestrat
metabolized is due to the plethora of P450 isofoamd to the broad substrate specificity of soméoisas. Over
80% of marketed drugs are converted into relatitgigrophilic compounds by CYP enzymes in the lieading to
their safe clearance from the body [12]

In almost all living organism, these enzymes aesent in more than one form, thus forming one efltingest gene
super families. The presence of P450 in diversarosgs, from bacteria, fungi to plants and aninrapsies that
the P450 superfamily is an extremely ancient entiynsystem and that all the current P450 may haszehded
from a common ancestral gene [13], [14], [15]. Tuerent P450 superfamily is thought to have beeméal by
gene duplication and adaptive diversification [16he enzyme system is located in microsomes andistenof
several cytochrome P450 isoforms and a nonspedifiDPH-cytochrome P450 oxidoreductase. The polymiarph
xenobiotic metabolizing CYP enzymes can be maimjddd into two classesand the sites of expresaimhlocal
concentrations differ for the various P450 enzyfi&$.

Class I: composed of CYP1A1, CYP1A2, CYP2A6, CYP2B&P2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1
CYP3A4 and CYP3AS5, which are well conserved, dohmote important functional polymorphisms, and ativa

in the metabolism of precarcinogens xenobiotics dneys [18]. Of these, CYP3A4 is present in thehbig
concentration in the human liver and is respondiime¢he oxidation of approximately two-thirds df kenown drugs
[19]. However, the other P450 enzymes listed ase ahportant players in xenobiotic metabolism amddpug
activation.

Class Il: composed of CYP2B6, CYP2C9, CYP2C19 aM®ZD6, which are highly polymorphic and active It
metabolism of drugs, but not of precarcinogens.

The notable diversity of CYP enzymes has given tassystematic classification of individual formga families
and subfamilies. CYP450 are named primarily onlihsis of the overall amino acid sequence [20]. AP’
named CYP followed by a number, a letter and a rem®450s with > 40% of the amino acids identicalwsually
grouped into the same family (e.g. CYP2A6 and CY®2Bd members with > 55% of the amino acids idahtce
generally grouped into the same sub family(e.g. A% and CYP2A7), although there are exceptionshtsé
rules. For examples, CYP6A1 and CYP6B2 are bothped into family 6 but the amino acid identitiesluése two
are < 40%. In this case the 40% rule was negleostsduse the sequences flanking the conserved roystedre
similar [21]. Given that this nomenclature systesrbased on the overall amino acid identity, anihgles amino
acid change may dramatically alter the substratzifipity of a P450[22], [23]. No information regiing the
function of a P450 should be assumed from its fleason within this system. However, the numbéfamily and
enzymes varies among different organisms. Theretveoeimportant factors with regard to the distribat and
activities of drug or xenobiotics metabolizing P4&@zymes. First, polymorphisms in the P450 genesetther
decrease or elevate the activities of the individireeymes, with higher levels of expression givirgg to higher
metabolic capacity in individuals that are consedjyedescribed as ‘extensive’ or ‘hyper’ metabotz4], [25].
Second, most of the drug-metabolizing enzymes abgest to induction by xenobiotics or environmerfedtors
[26], [27].

M ode of action:

Cytochrome P450s are multicomponent enzymes cargief two separated functional classes, namelgteda
transfer and oxygenation. Interaction and compléatiEm between two functional classes are necesdsathe full
catalytic function.

Under electron transfer, the cytochrome P450 sysiatalyzes the insertion of an oxygen atom into @Ad N-H
bonds, the epoxidation afbonds, and the addition of an oxygen atom to teetr®n pairs of nitrogen, sulfur, and
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phosphorus atoms resulting in the formation of a®xide or S-Oxide [28]. These basic reactions d&teno
followed by spontaneous reactions that yield thalfmetabolites as described in figurel.
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Fig. 1: Thegeneral catalytic cycle of CY450.1n explanation, oxidized form of P450 (1) bindswith substrate (2) and form P450-substrate
complex (3). It isfurther reduced with NADP-H fir st electron (4) so that oxygen molecules bind and under goes oxidation (5). However
NADP-H; second electron resultsthe oxidation of substrate and formation of water molecules (6) and product (7)

In brief, the cytochrome P450 catalytic cycle igiated by the binding of a substrate, usually witthcomitant
displacement of the distal water ligand. The fehgene is then reduced to the ferrous state useajrehs provided
by suitable electron donor. In cytochrome P450 mady other P450 enzymes, substrate binding is winelieved
to be a prerequisite for the transfer of the falgictron to the iron. Reduction of the iron is delled by binding of
oxygen to give the ferrous dioxy complex. Transfea second electron to this complex produces ehgcfperoxy
anion (PorF&-00 where Por = porphyrin) or, after protonation, féeic hydroperoxo complex

(Pof"-OO0H).Heterolytic cleavage ofthe dioxygen bondhiis peroxo intermediate extrudes a molecule of meate
forms the putative ferryl oxidizing species (figu2gHydrogen bonding of the distal ferric hydropeyoxygen,
directly or via a water molecule, to a highly coneel threonine facilitates this heterolytic cleaw4g9], [30], [31].
The ferryl species is thought to be responsiblerfost P450- catalyzed oxidations, although thedemroxo anion
and the ferric hydroperoxo complex have been indo#e oxidizing specie®ther types of cytochrome P450-
catalyzed reactions also occasionally occur (thenstpathway)t is not always, possible to circumvent the
requirement for activation of molecular oxygen iaaacalled "shunt pathway” by employing®} as a co-substrate
(figure 2). However, the oxidizing species thusaifed is apparently not identical to that obtaifgdnormal
oxygen activation[32]. Thus, peroxides cannot replenolecular oxygen activation in some reactiohsy toften
give product distributions that differ significaptfrom those obtained by molecular oxygen activatiand they
cause a more rapid degradation of the prostheticehgroup [33].In virtually all cases, however, the resulting
products are more polar, more readily conjugatad, raore readily excreted. It is noted that lipojghdlompounds
that do not have functions suitable for conjugateord are not susceptible to CYP oxidation are dliffi to
eliminate.
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Fig. 2: The Fe'""standsfor theresting ferric state of P450 and SH for a substrate molecule. The shunt pathway utilizing H,O, is shown as
arethreesitesfor the uncoupling of the enzymeto giverespectively O,", H,O, or H,O

Under oxygenation, CY450 dependent monooxygenassead which is extremely important metabolic enzymna
system involved in the metabolism of phenomenal bemof endogenous and exogenous compounds [3djobt
cases bacterial P450-dependent monooxygenasesmaposed of three components and electrons areféreets
from NADPH via an FAD-containing reductase and aalriton-sulfur protein to the cytochrome P450 wéher
catalysis of the monooxygenase reaction takes {ia%g [36]. The P450 oxidation stoichiometry rexps one
molecule of oxygen and two electrons from NADPHatll one oxygen atom to a substrate. The overaitiosaof
P450 monooxygenase mediated metabolism can bessegras follow

N

RH+ O, + NADPH + H’ ROH + H0 + NADF

[O]
RCHRWOOH

Where RH is substrate. Collectively P450 monooxggenare capable of metabolizing numerous subsiatesan
carry out multiple oxidative reactions [37]. Metdibm by monooxygenase generally results in detoaifon of the
substrate although activation is also possible dsecof organophosphate insecticides and tobaccstittmmt's
namely nitrogen-derived nitrosamines to procaroamsy which cause lung, esophageal, and pancreaticers
which is beyond the scope of discussion in thisene\[38], [39], [40].

Oxidation of Aromatic Rings: A Case study of Morpholine Biodegradation

Morpholine (GHgNO) is a simple heterocyclic compound with greatuistrial importance. Due to its chemical
nature as a cyclic ether and secondary aminegittensively used for various industrial purposeg, as a versatile
solvent in the manufacture of a range of drugshibtes and paints, rubber additive, anticorrosigent, emulsifier
and wetting agent in cosmetics and hygiene prodddfs Becauseof its solubility in water, signifitaamounts of
this chemical compound could be released via imdligffluents into the environment where it undesg chemical
or microbiologically nitrosation lead to the fornwat of the carcinogenic compouni-nitrosomorpholine
[42].While water is the elixir of life, people adying out of it. The contamination in water is ieasing with each
passing day and detrimental to the health of hulif@enSo removal of this pollutant from contamindteastewater
and the environment has been the subject of comadilieresearch in recent years because its biodiztipa in
biological effluent treatment plants (ETP) is wigddalegarded as problematical [43], [44]. So occuresrof
morpholine is therefore a serious potential pofittaf the environment. Despite a simple structitres relatively
recalcitrant to biodegradation. One reason foafiparent resistance to degradation may be thetHfatthe only
organisms reported to degrade it as a sole canbdremergy source are incapable of rapid growthcenhgl occur in
the environment in smallnumbers. The isolated deyas capable of growing on morpholine as sole sowfc
carbon, nitrogen and energy were identified in nuastes asnycobacteriawith the exception of an SK-05 isolate
[45]. The utilization of morpholine as nitrogen soes or co-metabolizing by some gram-negative bachas also
been reported [46]. The removal of morpholine framontaminated industrial wastewaters is therefore of
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environmental interest, and is possible by biolabiceatment since it has clearly established thatpholine is
biodegradable. Degradation pathways of morpholienetbeen proposed by various authors [47],[48]], [B®] It

was found that whemycobacteriumstrain MorG was grown with morpholine as sole seuof carbon and
nitrogen, enzymes for ethanolamine catabolism (Wia ethanolamine-O-phosphate pathway) and glyeollat

catabolism (via the glycerate pathway) were strprigtiuced and 2-(2 aminoethoxy) acetate and didilycacid
have been detected as intermediates. Qity@obacterium aurunstrain MO1, HE5S was also reported by different

authors [51], [52].

In brief, morpholine was cleaved into two C2 unitsich were probably further catabolized via sepagthway
branches, involving ethanolamine and acetaldehgdene case, and glycollate in the other case. fitialiring-
cleavage occurred at the C—N bond and biochemiadies suggest that a cytochromeP450 may involwuetthis

initial step as shown in figure 3 [52], [53].
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Fig. 3: Morpholine degradation pathway via theroute of either ethanolamine-O-phosphate or glycollate, so called ethanolamine and
glycollate pathway respectively

The oxidation of an aromatic ring bycytochrome P#Bariably involves oxidation of one of the-bonds rather
than direct insertion of the oxygen into one of #mematic ring C-H bonds. Thus, benzene oxide teenb
specifically identified as a product of the oxidatiof benzene by liver microsomes [54]. HowevenzZeme oxide
and the similarly unstable epoxides expected frlioenaxidation of other aromatic rings readily unaehgterolytic

cleavage of one of the epoxide C-O bonds. This bdedvage is followed by migration of a hydridenfraghe

carbon retainingthe oxygen to the adjacent carbmtéb givea aldehyde/ketone intermediate as shownation of

2-(2-aminoethoxy) acetaldehyde in morpholine degiad pathway by the catalytic action of CYP 450
monooxygenase(figure.3). Tautomerization of tl@toke yields a phenol product. This sequence pEstethe so-

called "NIH-shift" [55] as shown in figure 4.
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Fig. 4: The NIH shift involving initial formation of an epoxide metabolite in the oxidation of aromatic ring by cytochrome 450. The
starred hydrogen showsthat the hydrogen undergoesa 1,2 shift and then is partially lost in the final tautomerization step

Role to improve bioremediation (phytoremediation) of organic xenobiotics:

CYPs role for detoxification of xenobiotics in tlemvironment through bioremediation/phytoremediattauld
potentially be beneficial by designing geneticaitpdified organisms (transgenic plants). The uséraisgenic
plants for phytoremediation is critical becausenfdado not have the ability to completely catalmlipxic
compounds that are common in the food chain, sgcheabicides, pharmaceuticals, petrochemicals,cgolic
aromatic hydrocarbons(PAHSs), and polychlorinatedzeaee (PCBs) [56] [57]. Since many bacterial, maiiana
CYP enzymes have the capability to metabolize tlsesepounds into relatively safe products, they lsarused to
create transgenic plants for such purposes. Theréfothe last decade there has been an increessitigation of
the power of CYP biocatalysts for creating herlgeidsistant plants [58], [59] [60RIthough cytochrome P450
monooxygennases in higher plants pays an imporbdein the oxidative metabolism of endogenous exwhenous
lipophilic compounds [61], [62], [63]. Molecularformation on P450 species metabolizing xenobidticglants is
quite limited; however many P450 dependent oxidatim plant microsomes have been reported [64]okidation

of chlorotoluron in maize [65] and wheat [66]; Inom in wheat [67] and maize [68]; atrazine in tulynd
isoproturon in yam beam [69]. It was reported 1@ochrome P450 species responsible for the herbicide
detoxification and cross tolerance linliumrigiduni70] [71].On the other hand, there are number of P450 species
metabolizing xenobiotics in the microsomes of hurtiear because the human genome encodes 57 cytoehro
P450 enzymes, roughly a third of which are involirethe biosynthesis of essential sterols, siggatirolecules or
regulatory factors, a third of which are largelyaoted to the metabolism of xenobiotics, and a thiith functions
that remain unclear [72], [73]. A study of 11 hum@xP450 in the CYP1, 2 and 3 families using a reiomnt
yeast expression system showed that they can miggl®y herbicides and 4 insecticides [74]. Furtaeother
study conducted by same research group found tlrmah CYP1A1 metabolized 16 herbicides, includimagtnes,
ureas and carbamates and CYP2B6 metabolize marelthherbicides including chloroacetanilides, oxyamides
and 2,6-dinitroanilines, three insecticides and twdustrial chemicals [74]. In contrast, many b&aeteCYP
enzymes are also used to metabolize a number gbaamds; however each of mammalian or bacteriakaysdtas
its own advantage and limitation (table 1). Therefehere is a critical need to design mammaliafP€% improve
their catalytic efficiency, stability, expressiamnd the suitability of P450-CPR fusion enzymesyal as to design
bacterial CYPs for enhanced stability, expressamm, substrate diversity [75], [76] .

Table 1: Comparative studies of mammalian and bacterial CYPs

CYPs Advantage Limitation Referenceg

Require the redox partner cytochrome P450
reductase (CPR), which transfers electrons from|the

Mammalian Broad substrate specificity NADPH to the heme of CYP. to oxidize tHe [77]

CYPs

substrate
Expression in heterologous systems, including g Low turn-over number and enzyme stabi [6Q]
Do not require external redox partner for the thansf
) electrons from the NADPH to CYP, rather contai . . !
Bacterial N ’ COMAIL G not show substrate diversity and metaboliz
CYPs reductase domain within the CYP enzymes (self-siefiit limited number of compounds e[78],[79]

CYP).
Much higher turn-over (>100) and enzyme stability

Due to broad substrate specificity of human and mahan P450s, the resulted transgenic showed rexhkrk
improvement of metabolic degradation towards simglenultiple xenobiotics (table 2). Thus it is egpe that the
transgenic expression of both human and microbf#OPconjugation enzymes in plants will provide erde
detoxification and therefore improved remediatidom@anic xenobiotics.
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Table 2: Transgenic plantsfor enhanced phytoremediation of pesticides

Target plant Gene(s) Enzymes Source Effects Refer
. CYP1A1,CYP2B6, Cytochrome  P45(Q Phytoremediation tq
O.Sativa CYP2C19 monooxygenase Human atrazine and metolachor (80]
Solanumtuberosum,| CYP1A1,CYP2BS6, Cytochrome  P45(Q Human Resistance to sulfonyl urep 81]
0O.Sativa CYP2C19 monooxygenase and other herbicides
Cytochrome P45(Q . . i
N.tabaccum CYP105A1 monooxygenase Streptomycesgriseolus Resistance to sulfonyl ureg [82]
. Cytochrome  P45(Q |
O.Sativa CYP2C9 monooxygenase Human Tolerance to sulfonyl urea [83]
. Cytochrome P45(Q Tolerance to severgl
O.Sativa CYP2B22, CYP2C49 monooxygenase Susscrofa herbicides [84]
N.tabgccum, CYP71A10 Cytochrome P45(Q Glycine max Tole_ra_nce to phenyl urep [85]
A.thaliana monooxygenase herbicide
N.tabaccum CYP76B1 Cytochrome  P45Q Helianthus tuberosus Tole_ra_nce o severdl [86]
monooxygenase herbicides
Cytochrome  P45(Q Degradation to anthracene
N.tabaccum CYP450E1 monooxygenase Human and chloropyriphos (87]
CYP81B2, CYP71A11 Cytochrome  P45(Q Tobacco Degradation of
monooxygenase chlorotoluron
CYP1A1, CYP2B6,| Cytochrome  P45(Q Human Degradation of herbicideg,
CYP2C19, CYP2E1 monooxygenase insecticides and VOC
Cytochrome P45(Q .
XP1A monooxygenase R.rhodochorus Degradation of RDX
CYP1A2 ilukt;itr?ézts)ruﬁn o
Transgenic plants | CYP2A6 Indoley [12]
CYP2BL Cytochrome ~ P45Q Mammalian Cyclophosphamide
CYP2B11 monooxygenase yclophosp
Ifosfamide
Cyp2Cs Diclofenac
CYP3A4
Testosteror
CYPBMS Cytochrome ~ P4sq . g:gigg;es for  Alkanes,
CYPCAM monooxygenase PCBs. PAHS
CONCLUSION

At the global level, the use of xenobiotics hasvprbto assist solving of many problems facing hutnealth and

food production. However, such usage has occasydo@én accompanied with hazards to man and thiecement
(MAE). One of biological approaches to clean up xkeobiotics is the use of microbes. Microbes agralding
organic pollutants in environment and use thenttfeir normal metabolic processes as carbon or lmwap source
or consume the pesticides along with other souféecal or energy. This bioprocess of microbes cantiized for
the development of xenobiotics decontaminationrastbration of health of the environment. The useeaobiotic
degrading microbial systems requires an understgnali ecological requirements of degrading stramslved in
degrading processes. There is need for furthearelseon the biochemical and genetic aspects ofadegjon by
microbes. For that purpose hydrolytic enzymes, amsible for degradation of xenobiotics to nontopioducts in
the environment provides informed decision on wigehes to engineer. The cytochromes P450 are sdilese
group of enzymes as catalytic hemoproteins for k@@ detoxification. The two-state model (ringealage to
give an iminium carbon radical species followeddxygenation) of complete catalytic action of P45Qynes is
most important mechanism for variety of xenobiotiiesluding Morpholine. Although the precise mecisamiof
CYP on Morpholine removal is well understood andndy be shown that the production of negative ahang
Morpholine molecule has a positive effect on biption and degradation of Morpholine Bycobacteriumand
other isolates. Therefore, CYPs role must be egpldior detoxification of others xenobiotics by dgsing
genetically modified organisms for use in biorenagidn. However, limited information is availabletivirespect to
the relationships among the pesticide/ insectityge, concentration, exposure duration with CYPRs also found

that CYP gene responded quite differently to défgrinsecticides (Sun et al., 2014). Hence themoigieneral
pattern for predicting the regulation of CYPs gehased on the pesticide classifications. No dathigt,next few

years will uncover different novel aspects of PA&fction and will lead to deeper and more precisgeustanding

of the catalytic mechanisms of the amazing familyPd50 enzymes for other class of xenobiotics.d$ been

suggested that increased understanding of the atimyprocess involved in plant tolerance and déittation of

xenobiotics will provide new directions for maniptihg plant with superior remediation potentialth®lugh more
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focusing on transgenic plants has been made witjugation of mammalian or microbial CYP450, theatgntial

as engineered phytoremediation plants was not exarextensively in field trials as well as ecolagjiienpact and
underlying economics against conventional remegfiatechniques. These studies are just tip of iag.b@ur
knowledge continues to expand at a rapid pace,estigg that the next decade will outpace the lageirm of
improving our understanding of cytochrome 450. Biigation needed for the detailed biochemical and
physiological analysis of the whole process of phgmediation — a group of innovative technologeaproaches
should be continued; the creation of new, modifigdnetically stable, environmentally safe, highffeetive
vegetation; the selection of microorganisms or iotiest system for scaling up of phytoremediatioocpsses to
handle xenobiotic harm within collaborative actfgans without significant hazard to human beings.
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