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ABSTRACT

Contrast enhancement agents have been widely used in Magnetic Resonance Imaging (MRI) in clinical diagnostics.
Magnetic nanoparticles (MNPs) have shown a promising potential as contrast agent in MRI techniques for in vivo
assessments of anatomy, function, and metabolism. This paper aims to systematically review the most common
MNPs used as contrast agents for MRI, their contrast enhancing characteristics as well as recent advances and
clinical challenges. We searched the PubMed; EMBASE; CINAHL; Web of Science; Google scholar; BIOSS
Previews; Cambridge Scientific Abstracts; and additional sources for published and unpublished papers. The date
of the most recent search was 20 July 2015. The keywords were magnetic resonance imaging, contrast agents,
nanoparticles, clinical applications, and magnetic nanoparticles. The retrieved results including papers, patents,
and books were reviewed and after initial screening were studied and the relevant data were extracted. The main
parameters of MNPs, focusing on chemical and physical characteristics influencing the contrast enhancement factor
were reviewed and discussed. MRI contrast agents can be divided into two major categories of T1 and T2 contrast
agent. Paramagnetic contrast agents are used to enhance contrast in T1 weighted protocols and super
paramagnetic contrast agents for T2 weighted protocols. Gadolinium is the most common T1 contrast agents used
in MRI. Despite the wide use of Gadolinium, there is serious concern in patients with renal failure. Iron oxide
nanoparticles are a good alternative for these patients. However, relaxivity is the main issue when iron oxide is used
as contrast agent. The relaxivity strongly depends on the size of nanoparticle. Different types of paramagnetic and
superparamagnetic nanoparticles have been devel oped to overcome the drawbacks associated with gadolinium and
iron oxide. However, iron oxide and Gadolinium nanoparticles are till the most common contrast agentsin MRI.

Keywords. Magnetic Resonance Imaging, Contrast Agents, Magmetnoparticles, Iron oxide, Iron Platinum,
Gadolinium, Manganese nanopatrticle.

INTRODUCTION

Molecular imaging is a rapidly growing field witthe potential to revolutionize cardiovascular imagthrough
shifting diagnostic focus from functional abnorrtiab which occur late in a disease process to tbehbmical
events which precipitate the earliest stages afadis. Advances in nanoparticle technology ovelabkedecade
have shown that some of these materials have ttemfi to play an important role in the diagnaaisl treatment
of cancers [1-8]. MRI is one of the most usefulgtiastic imaging techniques with various applicagiam clinical
medicine because of its excellent spatial resalutimninvasive and nondestructive nature [9]. Neagive study of
internal organs of a human body has always bedralleage to medicine [10]. MRI is imaging of saftsue and in
some cases can not generate a sufficient confriastdevelopment of MRI to one of the most powetéghniques
in clinical diagnosis is accompanied by the progri@sthe design of contrast agents (CAs), whichaenk image
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quality [11]. Magnetic Resonance Imaging contrastras allow a high sensitivity for the early deimetof different
pathologies and the tracking of magnetically taggelts in vivo through molecular and cellular imagi[12]. MRI
contrast agents improve diagnostic accuracy in soonéditions such as inflammation and infectiougdses of the
brain [13], spine [14], and soft tissues [15]. \dai$ contrast agents have been developed for aeflnth molecular
imaging using MRI [16]. Among the broad spectrumnafnoscale materials being investigated for biooadi
applications, Magnetic nanoparticles (MNPs) havenegh significant attention due to their intrinsicagmetic
properties, which enable tracking through the radjp cornerstone, magnetic resonance (MR) imadhgrently,
contrast agents are used with a diameter of 56@on8n [17]. Today there are great two class of MRt@st agent:
T1 and T2 contrast agent. T1 and T2 CAs generattrasi enhancement in MR images via longitudinal an
transverse relaxation processes, respectively [&. efficiency for MRI CAs consists in loweringettongitudinal
(T1) or transverse (T2) relaxation times of theleacspins of water protons in tissues [19-21].

2. Basic Principles of M agnetic Resonance I maging

Magnetic resonance imaging is an imaging modalityctvis primarily used to construct Images of tHdRIsignal

from the hydrogen atoms in an object. In medicallMBdiologists are most interested in lookinghet NMR signal

from water and fat, the major hydrogen containiognponents of the human body [22]. MRI utilizes 8ieong

static homogenous magnetic field generated by thgnet. When the high frequency magnetic field {diad to the

subject placed in the homogeneous static magrietd; ft excites proton nuclear spins within thei@at's tissues.
The excited proton spins rotate at a rate dependeon the static magnetic field. As they flip, themit radio

frequency signals, referred as magnetic resonaigoals[23]. The signal intensity of a volume elerpen voxel,

composing the slice depends not only on the quaofitprotons present in this voxel but also on #fdity the

protons have to return to the equilibrium stateralteing excited with the radio frequency pulsat tmeans their
relaxation properties [24, 25]. The return of eadihuclei from the high-energy state to the lowrgper ground

state is associated with loss of energy to theosmding nuclei [26]. Macroscopically, relaxationncée

characterized by the longitudinal return of the n&tation to its ground state in the directioritef main magnetic
field. The MR relaxation times include T1 and T2heTT1 longitudinal relaxation time is the time ftive

magnetization to return to 63% of its original \valalso is called spin-lattice relaxation. Spins eo@sidered
completely relaxed after 3-5 T1 times. T2 is a tmb@vhich transversal component has lost 63% abitsted state
energy. During this time energy is transported fame spin to nearby spins [27, 28]. For this reasiois decay
constant also is named spin-to-spin relaxation. Métg resonance imaging (MRI) is a clinical diagimsodality

based on differences in the longitudinal and trars relaxation rates (1/T1 or 1/T2) of water pmstin different
tissues [29].

3. Contrast Agentsin MRI

MRI signal strength depends on the longitudinal)(@hd transverse (T2) relaxation time of water qmstthe
difference in the relaxation times causes diffemnitrasts in MRI images [30]. To maximize imagaldy, MR
contrast agents are often needed to decrease TIZanelaxation times [31]Severalmaterials have been recently
developed to enhance the image contrast and diagraascuracy of MRI [32-34]MRI contrast agents can be
divided into two main categories of paramagnetid @uper paramagnetic compounds. Paramagnetic sbntra
agents, also called T1 or positive contrast ageméspsually composed of Gadolinium3+ or Mn2+, \whienerates
positive signals on T1-weighted images. Superpagaetic contrast agents, also called T2 or negativarast
agents, are usually constructed with iron oxideictvlgenerates negative signal on T2 weighted im§ggls T1
contrast agents with reducing spin-lattice rela@tiime leads to a stronger signal on T1 weightedges. T2
contrast agents reduce the signal on T2-weightedgé® by both shortening the spin—spin relaxatiome ti
(T2constant) anaut-of-phase adjacent protons (by modification hadiit precession angular velocity). Therefore,
magnetic contrast agent, depending on their typaease the contrast of MRI in molecular level tigto either
increasing (paramagnetic T1lcontrast agent, maialgaBnium-based) or decreasing (superparamagn@tiontrast
agent, mainly iron-oxide-based) the intensity of IMKjnal [36].

4. Paramagnetic Agents

Currently paramagnetic metal ions are used as asinaigents in MRIThese materials are metals with unpaired
electrons in their outer shell (transition and temide metals). The two main and widely used comgsuof this
class are Gadolinium and manganese [37].

4-1. Gadolinium (Gd): Paramagnetic

Different metal ions have been introduced as csht@agents in MRI and the gadolinium (Gd3+) ionhe most
commonly used metal ion. This is due to a right boration of large number (seven) unpaired elestrmombined
with a long electron spin relaxation time which reakhis metal a very efficient relaxation enhanciggnt [38,
39]. The five MRI contrast agents approved by tBAFare based on Gd(lll) ion, the material has hagfility to

catalyze the relaxation of the water signal ancréate positive contrast in MRI [40].
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4-1-1.Gd-based magnetic resonance contrast agents (GBCASs) for molecular imaging

= Gadolinium Gd(I11) chelates: This agent enhances T1 relaxation rate (1/T1)camdmonly used as T1 contrast
agents, producing a positive image contrast. Becafishe toxic even at low concentrations free Giadon, it is
bound to a chelatgusually a low-molecular weight organic molecule tsuzs DTPAS5 (diethylene triamine
pentaacetic acid)) [41]. Both gadolinium and tlgatids alone can't be used because of the toxi2y To date,
Gd(ll) chelatesthe property due to strong paramagnetism, strengtbeelaxation, stability and inertness in the
body, are the most widely used contrast agentsii M3]. Gd(lll) chelates compound, by altering tieaxation
rate of the surrounding water protons to allow faore effective MRI contrast enhancement [40]. Tre{II§
chelate for clinical applications, has been dividet two major groups of cyclic (The macrocycligdnds, e.g.
DOTA and DO3A) and acrylic (The acryclic ligandgy.eDTPA and DTPA-BMA) [44].

= Macromolecular Gd(l11) complexes. Small molecular Gd(lll) chelates have a relatividy relaxivity and
extravasate non selectively from blood into theiisiitium of both normal tissue and tumor, whick baen a major
limitation for their clinical applications. Attaalg Gd(lll) chelates to macromolecules slows dowa rbtational
motion of the complexes, thus increases relaxwif#s]. For example Gd3+-hexanedione NPs(GdH-NRs)yce
stronger signal intensity than Gd-DTPA, probablgdiese the larger Gd complexes with high molecukeight in
GdH-NPs cause the slow tumbling rate of GdH-NP$ [46

= Dendrimer: Imaging the use of dendrimers as scaffolds togneMR contrast agents has received tremendous
interest in the scientific community. This is laligdue to the well-defined architectures, multivdlsurfaces, and
nanoscale sizes of dendrimers. Many research grbaps explored the use of dendrimers as a new ofa$d
positive MR contrast agents [47, 48], Typically Gid(complexed with DPTA [49], DOTA [50], or thedlerivatives
for T1 MR imaging applications [51]. Besides thealissed T1 MR contrast agents, dendrimers carbalssed as
stabilizers to form iron oxide NPs [52].

= Gadolinium-Based Hybrid Nanoparticles. recently Gadolinium-based hybrid (GH) nanoparticleere
developed as a positive MR contrast agent [53].0B@idm-based hybrid (GH) nanoparticles used tootlgool
contrast agents. They showed much higher longitldielaxivity and transverse relaxivity (r1 and tBan Gd—
DTPA which are commonly used for clinical magnetsonance imaging. The GH nanoparticles can udigeas
specific contrast agent [54]. Luminescent hybridayarticles with a paramagnetic Gd203 core were afplied
as contrast Agents for magnetic resonance imagifigese particles can be followed up by fluorescemaging
[55] .

= Biodegradable macromolecular: These new agents can act as macromolecular corigesits for in vivo
imaging and excrete rapidly as low molecular- weiglgents. The polydisulfide Gd(lll) is a biodegrhlga
macromolecular, complexes have a great potentiattdeveloped as safe, effective, biodegradableamatecular
MRI contrast agents for clinical applications [5G].

= Liposomal particles. Gd(Ill) complexes including Gd-DTPA [58, 59], GA[BA-BMA) [60] and Gd-DOTA
[61] have been encapsulated in the core of liposam@repare nano-scaled MRI contrast agents [62].

= Targeted contrast agents: The use of targeted contrast agents can improviasi and provide information
about specific biomarkers [63, 64], (e.g. Tumog&ing with small molecular, protein, dendrimegppolsomal-based
Gd contrast agents) [43].

4-1-2.Types of gadolinium contrast agents:

Gadolinium (1) contrast agents can be dividedittiree groups of the extracellular fluid agentsptl pool and
organ-specific agents.

Extracellular fluid agents. Dotarem, Magnevist, Omniscan, OptiMARK, and Pralgarare some of these
compounds [65]. When these agents are intravenoungigted, randomly distribute within the vascukand
interstitial ECF space and then excreted rapidth&ir unchanged forms through the kidney glomerfilation in
the kidney [42]. All approved GBCAs are administemtravenously, distribute into accessible extlata spaces
with a distribution half-life about 10 min, and aegcreted through the kidneys with a plasma hadf-tifpically
about 90 min in healthy human adults [6@]case of malfunction of the kidneys, contrastrigdasma elimination
can beConsiderably prolonged, with a half-life that mageed 30 hour in some individuals [67].

Blood pool agents (intravascular agents): The first-generation MR contrast agents was basethis design and
have been used to image ruptures in the blood—beaimer(BBB) [68]. This unique type of contraseats refers to
a diversity of contrast agents that are confinecobgpose to the intravascular space and allocatelligively to
cardiovascular applications [69]. This property blood-pool (BP) can be find out by controlling tHistribution
and elimination of the contrast agents, which imtby their size relative to the permeability ot thapillary
endothelium in various organs determined. AlthoBghcontrast agents are limited partiallyemtirely in passing
through the endothelial membrane bound, they ciinbst excreted through the kidneys [42].These &geme
designed in two ways: by connecting the Gd3+ iana tacromolecular polymer formed during the sysith§r0]
or combination of Gd3+ with plasma proteins to fommacromolecules in blood after injection [71]. Midchtion
the structure of polydifulfide Gd(lll) complexesrcéead to biodegradable macromolecular contrashisgwith
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various reinforce profiles in the blood pool. Pasydfide Gd(Ill) complexes have relatively long bbb circulation
time are graduallynto small compounds that are rapidly excretedughothe kidney filtration converte@he use of
biodegradable macromolecular contrast agents in Miabing cardiovascular disease and cancer, amddmate
the response to treatment [72-74].

Organ-specific agents. Organ-specific agents are designed to specifiadlyumulate in a given organ or tissue.
The diagnosis of hepatic lesions continues to pehlem even though many diagnostic methods ariahlea[75].
Although the more commonly used MR contrast med& gadolinium (Gd) chelates, they are relatively1-no
specific due to the rapid accumulation in the livgt6]. Many efforts have been made to serve Gd3pesific
contrast agents, small unilamellar liposomes usechariers for gadolinium chelates. This chelatespTin aqueous
volume of liposomes and has the potential not aslya specific contrast agent for the liver andespléut also for
imaging vascular system [77]. TetPaaminophenylporphyrin (TPP) was conjugated with ajailum
diethylenetriaminepen-taacetic acid (DTPA) (Gd2(BJ4TPP) could be a useful in MR imaging contras¢rig
with an specific tumors contrast agent [78]. A nelass of metal-loaded nanoparticles has develdpaidhave
potential as contrast agents for medical imagingthis case, the nanoparticles are loaded with Gd3provide
contrast in magnetic resonance (MR) imaging. Th&+3daded nanoparticles have a diameter of 120 amd,
provide excellent contrast when used to image tharthand gastrointestinal tract in a rat animal ehd@9].

4-1-3. Safety of gadolinium contrast agents

One of the important properties of MRI contrastragen clinical uses is safety. Because Gd(lll)sicare very toxic
in ionic form, extremely interfering with calciumhannels and protein binding sites, they cannotdmirdstered
directly [80, 81]. Free Gd ions accumulate inltker, spleen, kidney, and boné% reduce the side effects of toxic
ions and prevent tissue interaction, Gd(lIl) iome eaombined with chelating ligands. but Toxic GH(lbns may
still be released of some chelates via transmagtat with other metal ions such as Zn2+, Ca2d @u2+ in the
body and protonation of the ligands in the pH lohickhh may cause the separation of scheelite withénbiody [82,
83]. Nephrogenic fibrosing dermopathy (NFD) is diopathic disordein Kidney patients. In most patients with
NFD, dialysis for kidney failure occurs [84, 85]dften affects middle-aged. The Gd-DTPA is a smaithpound
that is easily released from the pores of the V&s&ax-containing contrast agents in patients withmal kidney
function are rapidly excreted from the kidney wétthalf-life of about 2 hours, however, in patiewish chronic
renal failure have a long half-life, and may beagee than 120 to 30 hours. If immediate after MRjiegraphy
dialysis be inadequataarkedly prolongs Gd clearance [86]. The combimatibmetabolic acidosis andsufficient
clearance of Gd-containing agent is present inlréilre [87, 88]. patient dehydration, advancegkause of
concomitant nephrotoxic drugs, multiple myelomarhéailure, and liver disease are other risk fec{89-92].

CONCLUSION

The use of contrast agents has revolutionized MBfnique especially in molecular imaging. Improvateén the
stability, relaxivity, safety and other charactcis of contrast agents make MRI a powerful tooltfe diagnosis of
abnormalities of the soft tissue. Today, Gadolininenoparticles are used as contrast agent to irapioage
quality of MRI technique. Despite plenty of reséahas been conducted on Gadolinium, there is segoncern in
patients with renal failure. Iron oxide nanopagglare a good alternative for these patients. Reéthaxs
problematic when the iron oxide is used as contaggeint, because this factor strongly depends orsittee of
nanoparticle. However, other types of paramagraatit superparamagnetic nanoparticles have beenogpedtb
overcome these weaknesses, but still iron oxideG@amiblinium nanoparticles are the most common aesh#igent
in MRI.
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